US 2019/0294541 Al

SYSTEMS AND METHODS FOR
PERFORMING MEMORY COMPRESSION

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 15/663,115, entitled “SYSTEMS AND
METHODS FOR PERFORMING MEMORY COMPRES-
SION”, filed Jul. 28, 2017, the entirety of which is incor-
porated herein by reference.

BACKGROUND

Technical Field

[0002] Embodiments described herein relate to the field of
computing systems and, more particularly, to efficiently
moving data for storage and processing.

Description of the Related Art

[0003] Generally speaking, a variety of computing sys-
tems include a processor and a memory, and the processor
generates access requests for instructions and application
data while processing one or more software applications.
When fetching instructions and data, the processor checks a
hierarchy of local cache memories and, if not found, the
processor issues requests for the desired instructions and
data to main memory or other storage such as, a CD-ROM,
or a hard drive, for example.

[0004] At times, the number of software applications
simultaneously running on the computing system reaches an
appreciable number. In addition, a variety of computing
systems include multiple processors such as a central pro-
cessing unit (CPU), data parallel processors like graphics
processing units (GPUs), digital signal processors (DSPs),
and so forth. Therefore, the amount of instructions and data
being used for processing the multiple software applications
appreciably grows. However, the memory storage locations
in the local cache memories have a limited amount of
storage space. Therefore, swapping of the instructions and
data between the local cache memories and the persistent
storage occurs.

[0005] The swapping and corresponding latency for wait-
ing for requested information to be loaded reduces perfor-
mance for the computing system. To reduce an amount of
storage for a particular quantity of data, the data is com-
pressed. Such compression takes advantage of repeated
sequences of individual data bits included in the data. When
the data is to be accessed, the data is decompressed, and then
possibly re-compressed once the access has been completed.

[0006] Generally speaking, when a general-purpose pro-
cessor, such as a central processing unit (CPU), is perform-
ing a software routine to compress and/or decompress data,
it is occupied for the duration of the operations. Additionally,
in a system that includes multiple processors, many times,
the CPU is the only processor with support for retrieving,
compressing and decompressing the desired data. Therefore,
the CPU is partially or fully unavailable while performing
one or more of local and network data retrieval and com-
pression. Further, the other processors incur delays while
waiting for the CPU to finish the retrieving, compressing and
decompressing operations on their behalf.

Sep. 26, 2019

[0007] Inview of the above, methods and mechanisms for
efficiently moving data for storage and processing are
desired.

SUMMARY

[0008] Systems and methods for efficiently moving data
for storage and processing are contemplated. In various
embodiments, a computing system includes a memory, a
cache memory and a processor. In response to receiving a
compression instruction, the processor fetches data from the
memory into the cache memory. In some embodiments, the
data is partitioned into multiple input words. Following, the
processor loads multiple input words from the cache
memory into a read buffer within the processor. A compres-
sion unit within the processor includes circuitry for execut-
ing the compression instruction. Therefore, the processor is
available for processing other operations while the compres-
sion unit processes the compression instruction.

[0009] In an embodiment, the compression unit selects
two or more input words of the multiple words to be used as
assigned input words. The compression unit includes mul-
tiple hardware lanes for performing operations of a com-
pression algorithm. Each of the two or more hardware lanes
of the multiple hardware lanes are assigned to a respective
one of the selected two or more input words. Each of the two
or more hardware lanes generates a respective compressed
packet based on at least its assigned input word. To generate
a compressed packet, each hardware lane uses a value to
compare against the assigned word to determine intra-group
dependencies. However, in various embodiments, prior to
determining intra-group dependencies of a first group of
words with a same index, a dictionary is accessed for a
younger second group of words, each word in the second
group having a same index.

[0010] The compression unit combines the compressed
packets into a group of compressed packets. In some
embodiments, the compression unit further combines two or
more groups into a packed group and writes the packed
group into a write buffer. At a later time, the processor sends
the packed group from the write buffer to a target storage
location.

[0011] In various embodiments, as each assigned input
word is processed, it is searched for repeated sequences of
data bits by being compared against previously seen data. In
some embodiments, the previously seen data is stored in
entries of a data structure (e.g., such as a table) referred to
as a dictionary. In some embodiments, the multiple hardware
lanes perform steps of a combination of a statistical-based
compression algorithm and a dictionary-based compression
algorithm. In some embodiments, each of the two or more
selected input words, which are assigned to the two or more
hardware lanes, has a corresponding index pointing to a
same entry of the multiple entries of the table. In some
embodiments, the contents of the same entry of the table are
read from the dictionary once for processing of the input
words currently assigned to the two or more hardware lanes.
In an embodiment, the hardware lane with the oldest input
word of the two or more assigned input words generates the
single read request. Additionally, the hardware lane with the
youngest input word of the two or more assigned input
words generates the single write request for updating the
table upon completion of the compression of the two or more
assigned input words. Therefore, the multiple read and write
requests for the sequences stored in the table for a serial



